NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ

Những hằng đẳng thức đáng nhớ dĩ nhiên rất gần gũi gì cùng với các bạn . Hôm ni Kiến đã nói kỹ rộng về 7 hằng đẳng thức quan trọng đặc biệt : bình phương của một tổng, bình phương của một hiệu, hiệu của hai bình phương thơm, lập phương thơm của một tổng, lập phương của một hiệu, tổng nhị lập phương và sau cuối là hiệu nhị lập pmùi hương. Các các bạn thuộc xem thêm nhé.

Bạn đang xem: Những hằng đẳng thức đáng nhớ

A. 7 hằng đẳng thức xứng đáng nhớ

1. Bình phương thơm của một tổng

Với A, B là các biểu thức tùy ý, ta có: ( A + B )2= A2+ 2AB + B2.

Ví dụ:

a) Tính ( a + 3 )2.b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương của một tổng.

Hướng dẫn:

a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32= a2+ 6a + 9.b) Ta có x2+ 4x + 4 = x2+ 2.x.2 + 22= ( x + 2 )2.

2. Bình phương của một hiệu

Với A, B là các biểu thức tùy ý, ta có: ( A - B )2= A2- 2AB + B2.

*

3. Hiệu hai bình phương

Với A, B là những biểu thức tùy ý, ta có: A2- B2= ( A - B )( A + B ).

*

4. Lập pmùi hương của một tổng

Với A, B là những biểu thức tùy ý, ta có: ( A + B )3= A3+ 3A2B + 3AB2+ B3.

*

5. Lập phương của một hiệu.

Với A, B là các biểu thức tùy ý, ta có: ( A - B )3= A3- 3A2B + 3AB2- B3.

Ví dụ :

a) Tính ( 2x - 1 )3.b) Viết biểu thức x3- 3x2y + 3xy2- y3bên dưới dạng lập phương thơm của một hiệu.

Hướng dẫn:

a) Ta có: ( 2x - 1 )3

= ( 2x )3- 3.( 2x )2.1 + 3( 2x ).12- 13

= 8x3- 12x2+ 6x - 1

b) Ta bao gồm : x3- 3x2y + 3xy2- y3

= ( x )3- 3.x2.y + 3.x. y2- y3

= ( x - y )3

6. Tổng nhì lập phương

Với A, B là các biểu thức tùy ý, ta có: A3+ B3= ( A + B )( A2- AB + B2).

Crúc ý: Ta quy ước A2- AB + B2là bình phương thơm thiếu thốn của hiệu A - B.

Xem thêm: Schannel - Game 4 Nút Contra

Ví dụ:

a) Tính 33+ 43.b) Viết biểu thức ( x + 1 )( x2- x + 1 ) dưới dạng tổng nhị lập phương thơm.

Hướng dẫn:

a) Ta có: 33+ 43= ( 3 + 4 )( 32- 3.4 + 42) = 7.13 = 91.b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13= x3+ 1.

7. Hiệu hai lập phương

Với A, B là các biểu thức tùy ý, ta có: A3- B3= ( A - B )( A2+ AB + B2).

Crúc ý: Ta quy ước A2+ AB + B2là bình phương thiếu thốn của tổng A + B.

Ví dụ:

a) Tính 63- 43.b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) dưới dạng hiệu hai lập phương

Hướng dẫn:

a) Ta có: 63- 43= ( 6 - 4 )( 62+ 6.4 + 42) = 2.76 = 152.b) Ta bao gồm : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3- ( 2y )3= x3- 8y3.

B. bài tập từ luyện về hằng đẳng thức

Bài 1.Tìm x biết

a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

Hướng dẫn:

a) Áp dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3- b3.

( a - b )( a + b ) = a2- b2.

Khi kia ta bao gồm ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.

⇔ x3- 33+ x( 22- x2) = 0 ⇔ x3- 27 + x( 4 - x2) = 0

⇔ x3- x3+ 4x - 27 = 0

⇔ 4x - 27 = 0

Vậy x=

*
.

b) Áp dụng hằng đẳng thức ( a - b )3= a3- 3a2b + 3ab2- b3

( a + b )3= a3+ 3a2b + 3ab2+ b3

( a - b )2= a2- 2ab + b2

lúc đó ta có: ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2= - 10.

⇔ ( x3+ 3x2+ 3x + 1 ) - ( x3- 3x2+ 3x - 1 ) - 6( x2- 2x + 1 ) = - 10

⇔ 6x2+ 2 - 6x2+ 12x - 6 = - 10

⇔ 12x = - 6

Vậy x=

*

Bài 2:Rút gọn biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2

2x2+ 4xy B. – 8y2+ 4xy- 8y2 D. – 6y2+ 2xy

Hướng dẫn

Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2

A = x2– (2y)2–

A = x2– 4y2– x2+ 4xy - 4y22

A = -8y2+ 4xy

Hãy lưu giữ nó nhé

*

Những hằng đẳng thức đáng nhớ trên hết sức quan trọng đặc biệt tủ kiến thức của họ . Thế cần các bạn hãy nghiên cứu và phân tích và ghi lưu giữ nó nhé. Những đẳng thức kia góp bọn họ cách xử lý những bài bác toán dễ cùng nặng nề một phương pháp tiện lợi, chúng ta đề xuất có tác dụng đi làm việc lại nhằm bạn dạng thân hoàn toàn có thể áp dụng giỏi hơn. Chúc chúng ta thành công xuất sắc với chăm chỉ trên tuyến phố học hành. Hẹn chúng ta sinh sống phần lớn bài xích tiếp theo